

This Booklet contains **24** pages.

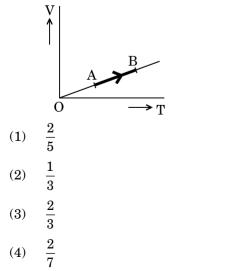
Test Booklet Code

Do not open this Test Booklet until you are asked to do so.

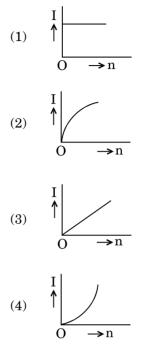
Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions :

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **Side-1** and **Side-2** carefully with **blue/black** ball point pen only.
- 2. The test is of **3 hours** duration and this Test Booklet contains **180** questions. Each question carries **4** marks. For each correct response, the candidate will get **4** marks. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **WW**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is *not* permissible on the Answer Sheet.


Name of the Candidate (in Capitals) :	
Roll Number : in figures	
: in words	
Centre of Examination (in Capitals) :	
Candidate's Signature :	Invigilator's Signature :
Facsimile signature stamp of Centre Superintendent :	

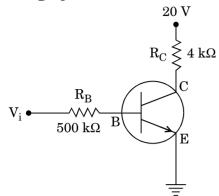
- 1. The efficiency of an ideal heat engine working 5. between the freezing point and boiling point of water, is
 - (1)26.8%
 - (2)6.25%
 - (3)20%
 - 12.5%(4)
- 2. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere? (Given:


Mass of oxygen molecule (m) = 2.76×10^{-26} kg

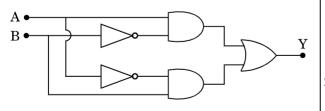
Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$)

- (1) $2.508 \times 10^4 \text{ K}$
- $5.016 \times 10^4 \text{ K}$ (2)
- $8.360 \times 10^4 \text{ K}$ (3)
- 1.254×10^4 K (4)
- 3. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
 - (1)13.2 cm
 - (2)12.5 cm
 - (3)8 cm
 - (4)16 cm
- The volume (V) of a monatomic gas varies with 4. its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B. is

A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?


- 6. A carbon resistor of (47 ± 4.7) k Ω is to be marked rings of different colours with for its identification. The colour code sequence will be
 - (1)Violet - Yellow - Orange - Silver
 - (2)Yellow - Green - Violet - Gold
 - (3)Yellow - Violet - Orange - Silver
 - Green Orange Violet Gold (4)
- 7. A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is
 - 10 (1)
 - (2)20
 - (3)11

 - (4)9


- 8. Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is
 - (1) 40 Ω
 - $(2) \quad 250 \ \Omega$
 - $(3) \quad 25 \ \Omega$
 - $(4) \quad 500 \; \Omega$
- 9. A metallic rod of mass per unit length 0.5 kg m⁻¹ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
 - (1) 7.14 A
 - (2) 14·76 A
 - $(3) \quad 5{\cdot}98 \; A$
 - (4) 11·32 A
- 10. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
 - (1) the current source
 - (2) the lattice structure of the material of the rod
 - (3) the magnetic field
 - (4) the induced electric field due to the changing magnetic field
- 11. An inductor 20 mH, a capacitor 100 μ F and a resistor 50 Ω are connected in series across a source of emf, V = 10 sin 314 t. The power loss in the circuit is
 - $(1) \quad 0.79 \ W$
 - $(2) \quad 2{\cdot}74 \; W$
 - (3) 0·43 W
 - (4) 1·13 W

- An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
 - (1) 30 cm away from the mirror
 - (2) 30 cm towards the mirror
 - (3) 36 cm away from the mirror
 - (4) 36 cm towards the mirror
- An em wave is propagating in a medium with a velocity \$\vec{V}\$ = V\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along
 - (1) z direction
 - (2) y direction
 - (3) + z direction
 - (4) -x direction
- 14. The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - $(1) \quad 0{\cdot}138 \; H$
 - $(2) \quad 1{\cdot}389 \ H$
 - $(3) \quad 138{\cdot}88 \ H$
 - (4) 13·89 H
- 15. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
 - (1) 60°
 - (2) 30°
 - (3) 45°
 - (4) zero

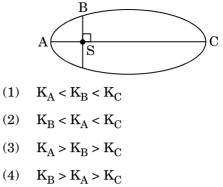
16. In the circuit shown in the figure, the input voltage V_i is 20 V, $V_{BE} = 0$ and $V_{CE} = 0$. The values of I_B , I_C and β are given by

- (1) $I_B = 40 \ \mu A, \ I_C = 10 \ mA, \ \beta = 250$
- (2) $I_B = 20 \ \mu A, \ I_C = 5 \ mA, \ \beta = 250$
- (3) $I_B = 25 \ \mu A, \ I_C = 5 \ mA, \ \beta = 200$
- (4) $I_B = 40 \ \mu A, \ I_C = 5 \ mA, \ \beta = 125$
- In a p-n junction diode, change in temperature due to heating
 - (1) affects only reverse resistance
 - (2) does not affect resistance of p-n junction
 - (3) affects only forward resistance
- 18. In the combination of the following gates the output Y can be written in terms of inputs A and B as

- (1) $\overline{\mathbf{A} \cdot \mathbf{B}}$
- (2) $\overline{\mathbf{A} \cdot \mathbf{B}} + \mathbf{A} \cdot \mathbf{B}$
- (3) A. \overline{B} + \overline{A} . B
- (4) $\overline{A+B}$

- Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation ?
- (1) Reflected light is polarised with its electric vector parallel to the plane of incidence

(2)
$$i = \sin^{-1}\left(\frac{1}{\mu}\right)$$


(3) Reflected light is polarised with its electric vector perpendicular to the plane of incidence

(4)
$$i = \tan^{-1}\left(\frac{1}{\mu}\right)$$

- 20. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
 - (1) 1·8 mm
 - $(2) \quad 2{\cdot}1 \text{ mm}$
 - (3) 1·9 mm
 - (4) 1·7 mm
- **21.** An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - (1) small focal length and large diameter
 - (2) large focal length and large diameter
 - (3) large focal length and small diameter
 - (4) small focal length and small diameter

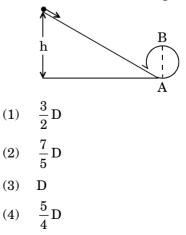
- 22. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - $(1) \quad 330 \text{ m/s}$
 - $(2) \quad 350 \text{ m/s}$
 - $(3) \quad 339 \text{ m/s}$
 - (4) 300 m/s
- 23. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s^2 at a distance of 5 m from the mean position. The time period of oscillation is
 - (1) $2\pi s$
 - (2) 2 s
 - $(3) \quad \pi \ s$
 - (4) 1 s
- **24.** The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
 - (1) independent of the distance between the plates.
 - (2) proportional to the square root of the distance between the plates.
 - (3) linearly proportional to the distance between the plates.
 - (4) inversely proportional to the distance between the plates.
- 25. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
 - (1) smaller
 - (2) 10 times greater
 - (3) 5 times greater
 - (4) equal

The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_A , K_B and K_C , respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

- 27. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (K_t) as well as rotational kinetic energy (K_r) simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is
 - (1) 7:10
 - (2) 10:7
 - (3) 5:7
 - (4) 2:5
- **28.** A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere ?
 - (1) Angular velocity
 - (2) Rotational kinetic energy
 - (3) Moment of inertia
 - (4) Angular momentum
- **29.** If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is *not* correct ?
 - (1) Raindrops will fall faster.
 - (2) Time period of a simple pendulum on the Earth would decrease.
 - (3) Walking on the ground would become more difficult.
 - (4) 'g' on the Earth will not change.

- 30. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field E . Due to the force q E, its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
 35.
 - (1) 2 m/s, 4 m/s
 - (2) 1 m/s, 3.5 m/s
 - (3) 1 m/s, 3 m/s
 - (4) 1.5 m/s, 3 m/s
- **31.** A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is

(1)
$$a = \frac{g}{\csc \theta}$$


- (2) $a = g \cos \theta$
- (3) $a = \frac{g}{\sin \theta}$

(4)
$$a = g \tan \theta$$

- 32. The moment of the force, $\overrightarrow{F} = 4\hat{i} + 5\hat{j} 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by 37.
 - (1) $-8\hat{i} 4\hat{j} 7\hat{k}$ (2) $-7\hat{i} - 8\hat{j} - 4\hat{k}$ (3) $-4\hat{i} - \hat{j} - 8\hat{k}$ (4) $-7\hat{i} - 4\hat{j} - 8\hat{k}$
- **33.** A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is
 - (1) 0.521 cm
 - (2) 0.053 cm
 - (3) 0.525 cm
 - (4) 0.529 cm

Which one of the following statements is *incorrect*?

- (1) Rolling friction is smaller than sliding friction.
- (2) Frictional force opposes the relative motion.
- (3) Limiting value of static friction is directly proportional to normal reaction.
- (4) Coefficient of sliding friction has dimensions of length.
- 35. Three objects, A : (a solid sphere), B : (a thin circular disk) and C : (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation
 - (1) $W_C > W_B > W_A$
 - $(2) \quad \mathbf{W}_{\mathrm{B}} > \mathbf{W}_{\mathrm{A}} > \mathbf{W}_{\mathrm{C}}$
 - $(3) \quad \mathrm{W}_\mathrm{A} > \mathrm{W}_\mathrm{B} > \mathrm{W}_\mathrm{C}$
 - $(4) \quad W_A > W_C > W_B$
- **36.** A moving block having mass m, collides with another stationary block having mass 4m. The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
 - (1) **0**·5
 - (2) 0.8
 - (3) 0.25
 - (4) **0**·4
 - 7. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

- **38.** Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount ?
 - (1) 9 F
 - (2) 4 F
 - (3) 6 F
 - (4) F
- **39.** A sample of 0.1 g of water at 100°C and normal pressure $(1.013 \times 10^5 \text{ Nm}^{-2})$ requires 54 cal of heat energy to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is
 - (1) 104·3 J
 - $(2) ~~ 42{\cdot}2~J$
 - $(3) ~~ 208{\cdot}7~J$
 - (4) 84.5 J
- 40. The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4}\lambda_0$, the power radiated by it becomes nP. The value of n is
 - (1) $\frac{3}{4}$ (2) $\frac{256}{81}$ (3) $\frac{4}{3}$
 - (4) $\frac{81}{256}$
- **41.** A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to

(1) r^{3} (2) r^{5} (3) r^{2} (4) r^{4} An electron of mass m with an initial velocity $\overrightarrow{V} = V_0 \stackrel{\circ}{i} (V_0 > 0)$ enters an electric field $\overrightarrow{E} = -E_0 \stackrel{\circ}{i} (E_0 = \text{constant} > 0)$ at t = 0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is

(1)
$$\frac{\lambda_0}{\left(1 + \frac{eE_0}{mV_0}t\right)}$$

(2)
$$\lambda_0 t$$

(3)
$$\lambda_0 \left(1 + \frac{eE_0}{mV_0}t\right)$$

(4)
$$\lambda_0$$

- **43.** For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is
 - (1) 20

42.

- (2) 30
- (3) 10
- (4) 15
- **44.** The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
 - (1) 1:1
 - (2) 2:-1
 - (3) 1:-1
 - (4) 1:-2
- 45. When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to $5v_0$, the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is
 - (1) 1:2
 - (2) 4:1
 - (3) 1:4
 - (4) 2:1

- (1) MgO
- (2) BaO
- (3) BeO
- (4) CaO
- **47.** The difference between amylose and amylopectin is
 - (1) Amylopectin have $1 \to 4 ~\alpha\text{-linkage}$ and $1 \to 6 ~\alpha\text{-linkage}$
 - (2) Amylopectin have 1 \rightarrow 4 $\alpha\text{-linkage}$ and 1 \rightarrow 6 $\beta\text{-linkage}$

 - (4) Amylose is made up of glucose and galactose
- 48. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
 - (1) 1.4
 - (2) 2.8
 - (3) 3.0
 - (4) 4.4
- **49.** Regarding cross-linked or network polymers, which of the following statements is *incorrect* ?
 - (1) They contain covalent bonds between various linear polymer chains.
 - (2) Examples are bakelite and melamine.
 - (3) They are formed from bi- and tri-functional monomers.
 - (4) They contain strong covalent bonds in their polymer chains.
- **50.** Nitration of aniline in strong acidic medium also gives m-nitroaniline because **54.**
 - (1) In spite of substituents nitro group always goes to only m-position.
 - (2) In absence of substituents nitro group always goes to m-position.
 - (3) In electrophilic substitution reactions amino group is meta directive.
 - (4) In acidic (strong) medium aniline is present as anilinium ion.

- The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order
 - $(1) \quad \mathrm{C_2H_5OH, C_2H_6, C_2H_5Cl}$
 - $(2) \quad \mathrm{C_2H_5Cl}, \mathrm{C_2H_6}, \mathrm{C_2H_5OH}$
 - $(3) \quad C_2H_5OH, C_2H_5Cl, C_2H_5ONa$
 - $(4) \quad C_2H_5OH, C_2H_5ONa, C_2H_5Cl$
- 52. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
 - (1) $CH \equiv CH$
 - $(2) \quad \mathrm{CH}_3 \mathrm{CH}_3$
 - (3) $CH_2 = CH_2$
 - (4) CH₄
- 53. The compound $\mathrm{C_7H_8}$ undergoes the following reactions :

$$C_7H_8 \xrightarrow{3 \operatorname{Cl}_2/\Delta} A \xrightarrow{\operatorname{Br}_2/\operatorname{Fe}} B \xrightarrow{\operatorname{Zn}/\operatorname{HCl}} C$$

The product 'C' is

- (1) *m*-bromotoluene
- (2) 3-bromo-2,4,6-trichlorotoluene
- (3) *o*-bromotoluene
- (4) *p*-bromotoluene
- Which oxide of nitrogen is *not* a common pollutant introduced into the atmosphere both due to natural and human activity ?
 - (1) N₂O₅
 - (2) N₂O
 - (3) NO₂
 - (4) NO

55. The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1: 0.5: 1. ΔH for the formation of XY is -200 kJ mol^{-1} . The bond dissociation energy of X_2 will be

- (1) 200 kJ mol^{-1}
- (2) 800 kJ mol^{-1}
- (3) 100 kJ mol^{-1}
- (4) 400 kJ mol^{-1}
- **56.** When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
 - (1) is halved
 - (2) is tripled
 - (3) is doubled
 - (4) remains unchanged
- **57.** The correction factor 'a' to the ideal gas equation corresponds to
 - $(1) \quad density \ of \ the \ gas \ molecules$
 - (2) electric field present between the gas molecules
 - (3) volume of the gas molecules
 - (4) forces of attraction between the gas **62.** molecules
- **58.** For the redox reaction

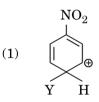
 $\mathrm{MnO}_4^- + \mathrm{C_2O}_4^{2-} + \mathrm{H^+} \longrightarrow \mathrm{Mn}^{2+} + \mathrm{CO}_2 + \mathrm{H_2O}$

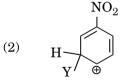
the correct coefficients of the reactants for the balanced equation are

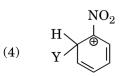
	${\rm MnO}_4^-$	$C_2 O_4^{2-}$	H^{+}
(1)	16	5	2
(2)	2	16	5
(3)	2	5	16
(4)	5	16	2

59. Which one of the following conditions will favour maximum formation of the product in the reaction,

 $A_2(g) + B_2(g) \rightleftharpoons X_2(g) \quad \Delta_r H = -X kJ?$


- (1) Low temperature and high pressure
- (2) High temperature and high pressure
- (3) Low temperature and low pressure
- (4) High temperature and low pressure


Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :


Then the species undergoing disproportionation is

- (1) BrO_3^-
- (2) Br₂
- $(3) BrO_4^-$
- (4) HBrO
- **61.** Among CaH_2 , BeH_2 , BaH_2 , the order of ionic character is
 - (1) $\operatorname{BeH}_2 < \operatorname{CaH}_2 < \operatorname{BaH}_2$
 - (2) $BeH_2 < BaH_2 < CaH_2$
 - (3) $CaH_2 < BeH_2 < BaH_2$
 - (4) $BaH_2 < BeH_2 < CaH_2$
- **62.** In which case is the number of molecules of water maximum ?
 - $(1) \quad 18 \ mL \ of water$
 - (2) 0.00224 L of water vapours at 1 atm and 273 K
 - $(3) \quad 0.18 \text{ g of water}$
 - (4) 10^{-3} mol of water
- **63.** The correct difference between first- and second-order reactions is that
 - (1) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
 - (2) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - (3) the half-life of a first-order reaction does not depend on $[A]_0$; the half-life of a second-order reaction does depend on $[A]_0$
 - (4) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations

- **64.** Which of the following is correct with respect to - I effect of the substituents ? (R = alkyl)
 - $(1) \quad -\mathrm{NH}_2 < -\mathrm{OR} < -\mathrm{F}$
 - (2) $-NH_2 > -OR > -F$
 - (3) $-NR_2 < -OR < -F$
 - (4) $-NR_2 > -OR > -F$
- 65. Which of the following molecules represents the order of hybridisation sp², sp², sp, sp from left to right atoms ?
 - (1) $HC \equiv C C \equiv CH$
 - (2) $CH_2 = CH CH = CH_2$
 - (3) $CH_2 = CH C \equiv CH$
 - (4) $CH_3 CH = CH CH_3$
- **66.** Which of the following carbocations is expected to be most stable ?

Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1s^2 2s^2 2p^3$, the simplest formula for this compound is

- (1) Mg_2X_3
- (2) Mg₂X
- (3) MgX₂
- (4) Mg_3X_2

Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature) is

(1)
$$\frac{\sqrt{3}}{\sqrt{2}}$$

(2)
$$\frac{3\sqrt{3}}{4\sqrt{2}}$$

(3)
$$\frac{4\sqrt{3}}{3\sqrt{2}}$$

(4)
$$\frac{1}{2}$$

69. Which one is a *wrong* statement ?

- (1) Total orbital angular momentum of electron in 's' orbital is equal to zero.
- $(2) \quad \ \ {\rm The \ electronic \ configuration \ of \ N \ atom \ is}$

$$\begin{array}{c|c} 1s^2 & 2s^2 & 2p_x^1 \ 2p_y^1 \ 2p_z^1 \\ \hline \uparrow \downarrow & \uparrow \downarrow & \hline \uparrow \downarrow & \hline \uparrow \downarrow \downarrow \end{array}$$

- (3) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
- (4) The value of m for d_{z^2} is zero.
- **70.** Consider the following species :

 $\mathrm{CN}^+\!\!,\ \mathrm{CN}^-\!\!,\ \mathrm{NO}$ and CN

Which one of these will have the highest bond order ?

- (1) NO
- (2) CN⁺
- (3) CN⁻
- (4) CN

71.	Which of the following statements is <i>not</i> true for	77.	In the reaction
	halogens?		OH O ⁻ Na ⁺
	 All form monobasic oxyacids. All but fluorine show positive oxidation 		
	states.		$\bigcirc + CHCl_3 + NaOH \longrightarrow \bigcirc \frown CHO$
	(3) All are oxidizing agents.		the electrophile involved is
	(4) Chlorine has the highest electron-gain enthalpy.		\oplus
			(1) dichloromethyl cation $(CHCl_2)$
72.	Considering Ellingham diagram, which of the following metals can be used to reduce alumina?		(2) dichloromethyl anion $(CHCl_2)$
	(1) Fe		(3) formyl cation (CHO)
	(2) Mg		
	(3) Zn		(4) dichlorocarbene ($:CCl_2$)
	(4) Cu		
73.	The correct order of atomic radii in group 13 elements is	78.	Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of
	(1) $B < Al < In < Ga < Tl$		comparable molecular mass. It is due to their
	(2) $B < Ga < Al < Tl < In$		(1) formation of intramolecular H-bonding
	(3) B < Al < Ga < In < Tl		(2) more extensive association of carboxylic
	(4) $B < Ga < Al < In < Tl$		acid via van der Waals force of attraction
74.	In the structure of ClF_3 , the number of lone pairs		(3) formation of carboxylate ion
	of electrons on central atom 'Cl' is		(4) formation of intermolecular H-bonding
	(1) one		
	(2) four	79.	Compound A, $C_8H_{10}O$, is found to react with
	(3) two(4) three		NaOI (produced by reacting Y with NaOH) and
			yields a yellow precipitate with characteristic smell.
75.	The correct order of N-compounds in its decreasing order of oxidation states is		A and Y are respectively
	(1) HNO_3 , NO, N ₂ , NH ₄ Cl		_
	(2) HNO_3 , NH_4Cl , NO , N_2		(1) $H_3C \longrightarrow CH_2 - OH \text{ and } I_2$
	(3) HNO_3 , NO, NH_4Cl , N_2		
	(4) $\text{NH}_4\text{Cl}, \text{N}_2, \text{NO}, \text{HNO}_3$		(2) $CH - CH_3 \text{ and } I_2$
76.	Which one of the following elements is unable to		OH
	form MF_6^{3-} ion ?		(3) $CH_2 - CH_2 - OH \text{ and } I_2$
	(1) Ga		(5) (5)
	(2) B		\sim $^{\rm CH_3}$
	(3) Al		(4) $CH_3 \longrightarrow OH \text{ and } I_2$
	(4) In		

80.	Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the <i>correct</i> code :				of the ions given in	85.	Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations :
		Colun	nn I		Column II		a. 60 mL $\frac{M}{10}$ HCl + 40 mL $\frac{M}{10}$ NaOH
	a.	Co^{3+}		i.	$\sqrt{8}$ B.M.		10 10
	b.	Cr^{3+}		ii.	$\sqrt{35}$ B.M.		b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
	c.	Fe ³⁺		iii.	$\sqrt{3}$ B.M.		c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
	d.	Ni ²⁺		iv.	$\sqrt{24}$ B.M.		0
				v.	$\sqrt{15}$ B.M.		d. 100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH
		a	b	С	d		pH of which one of them will be equal to 1?
	(1)	iv	v	ii	i		(1) b (2) d
	(2)	iv	i	ii	iii		(2) d (3) a
	(3)	i	ii	iii	iv		(4) c
	(4)	iii	v	i	ii	86.	On which of the following properties does the
81.	Iron	carbon	nyl, Fe(C	$(O)_5$ is		00.	coagulating power of an ion depend ?
	(1)	tetrar	nuclear				(1) The magnitude of the charge on the ion
	(2)	trinuc					(2) Both magnitude and sign of the charge on
	(3)		nuclear				the ion
	(4)	dinucl	lear				(3) Size of the ion alone
82.		-	etry and Ni(CO) ₄]	-	etic behaviour of the		(4) The sign of charge on the ion alone
	(1)		-		try and diamagnetic	87.	The solubility of $BaSO_4$ in water is
	(2)	-	-	-	try and paramagnetic		2.42×10^{-3} gL ⁻¹ at 298 K. The value of its
	(3)		0	·	and diamagnetic		solubility product (K_{sp}) will be
	(4)	tetrah	iedral ge	eometry	and paramagnetic		(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)
83.					lowing ions exhibits gnetism as well ?		(1) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$
	(1)	CrO_4^{2}		Paramag	Broubin as well .		(2) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$
		1					(3) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$
	(2)	MnO	-				(4) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$
	(3)	Cr_2O_{2}	2– 7			88.	Given van der Waals constant for NH_3 , H_2 , O_2
	(4)	MnO	$\frac{2}{4}$			00.	and CO_2 are respectively 4.17, 0.244, 1.36 and
84.	The	type	of isom	erism e	hown by the complex		3.59, which one of the following gases is most
01.		$Cl_2(en)_2$		5115111 51	nown by the complex		easily liquefied ?
	(1)	Geom	etrical i	isomeris	m		 (1) NH₃ (2) O₂
	(2)		ation iso				2
	(3)			isomeris	sm		$\begin{array}{ccc} (3) & \mathrm{H}_2 \\ (4) & \mathrm{CO} \end{array}$
	(4)	Linka	age isom	erism			(4) CO ₂

ALHCA/WW/Page 12

89.	Which of the following compounds can form a zwitterion?	91.		type of ecological pyramid would be d with the following data ?
			Se	condary consumer : 120 g
	(1) Aniline		Pr	imary consumer : 60 g
	(2) Benzoic acid		Pr	imary producer : 10 g
	(2) Belizoic acia		(1) In	verted pyramid of biomass
	(3) Acetanilide		(2) Uj	pright pyramid of numbers
	(4) Glycine		(3) Py	ramid of energy
	(+) Glychie		(4) Uj	pright pyramid of biomass
		92.	Natality	y refers to
				eath rate
90.	Identify the major products P, Q and R in the			umber of individuals leaving the habitat
	following sequence of reactions :		(3) Bi	rth rate
			(4) Nu	umber of individuals entering a habitat
	Anhydrous $AlCl_3$	93.	World C	Dzone Day is celebrated on
	$+ CH_3 CH_2 CH_2 Cl \xrightarrow{AlCI_3} \rightarrow$		(1) 5 ^{tl}	^h June
	$P \xrightarrow{(i) O_2} Q + R$		(2) 16	th September
	(ii) H_3O^+/Δ		(3) 21	st April
	P Q R		(4) 22	and April
	$\rm CH_2 CH_2 CH_3$ CHO	94.	acts as	osphere, which of the following elements a catalyst in degradation of ozone and of molecular oxygen ?
				arbon
	(1) $[]$, $[]$, $CH_3CH_2 - OH$		(2) Fe	
	\sim		(3) Cl	
			(4) Oz	xygen
	CH(CH ₃) ₂ OH	95.	Niche is	3
	(2) , , $CH_3CH(OH)CH_3$		(1) all	the biological factors in the organism's vironment
	CH ₂ CH ₂ CH ₃ CHO COOH			e range of temperature that the organism reds to live
			(3) th	e physical space where an organism lives
	(3) , , ,			e functional role played by the organism nere it lives
		96.	Which o	of the following is a secondary pollutant ?
	OH		(1) CO)
	(4) $CH(CH_3)_2$ $CH_3 - CO - CH_3$		(2) SO	
	$(1) \qquad , \qquad , \qquad , \qquad , \qquad \\ (1) \qquad , \qquad \\ (1) \qquad \\ $		(2) C(-
				-
			$(4) O_{3}$	3

	1	104	The steps during which approaching of the principal
97.	What is the role of NAD^+ in cellular	104.	The stage during which separation of the paired homologous chromosomes begins is
	respiration ?(1) It functions as an enzyme.		(1) Pachytene
	(1) It functions as an enzyme.(2) It is a nucleotide source for ATP synthesis.		(2) Diakinesis
	(3) It functions as an electron carrier.		(3) Diplotene
	(4) It is the final electron acceptor for anaerobic		(4) Zygotene
	respiration.	105.	Which of the following is true for nucleolus ?
98.	Oxygen is <i>not</i> produced during photosynthesis by		(1) Larger nucleoli are present in dividing cells.
	(1) Green sulphur bacteria		(2) It takes part in spindle formation.
	(2) Cycas		(3) It is a membrane-bound structure.
	(3) Nostoc		(4) It is a site for active ribosomal RNA
	(4) Chara		synthesis.
99.	Which one of the following plants shows a very	106.	Which among the following is <i>not</i> a prokaryote ?
	close relationship with a species of moth, where		(1) Saccharomyces
	none of the two can complete its life cycle without the other ?		(2) Nostoc
	(1) Hydrilla		(3) Mycobacterium
	(2) Banana	105	(4) Oscillatoria
	(3) Yucca	107.	
	(4) Viola		 Temperature O₂ concentration
100.	In which of the following forms is iron absorbed		2
2000	by plants ?		 (3) Light (4) CO₂ concentration
	(1) Ferric	100	2
	(2) Free element	108.	Stomata in grass leaf are
	(3) Ferrous		 Dumb-bell shaped Rectangular
	(4) Both ferric and ferrous		(3) Kidney shaped
101.	Which of the following elements is responsible for		(4) Barrel shaped
	maintaining turgor in cells ?	109.	
	 Magnesium Potassium 	2001	sugars are
	(3) Sodium		(1) hydroxyl and methyl
	(4) Calcium		(2) carbonyl and phosphate
109	Double fertilization is		(3) carbonyl and methyl
102.	(1) Fusion of two male gametes of a pollen tube		(4) carbonyl and hydroxyl
	with two different eggs	110.	The Golgi complex participates in
	(2) Fusion of two male gametes with one egg		(1) Fatty acid breakdown
	(3) Fusion of one male gamete with two polar		(2) Respiration in bacteria
	nuclei		(3) Formation of secretory vesicles
	(4) Syngamy and triple fusion		(4) Activation of amino acid
103.	Pollen grains can be stored for several years in	111.	Which of the following is <i>not</i> a product of light
	liquid nitrogen having a temperature of		reaction of photosynthesis ?
	(1) $-120^{\circ}C$		(1) ATP
	(2) $-196^{\circ}C$		(2) NADPH
	$(3) - 80^{\circ}C$		(3) NADH
	(4) $-160^{\circ}C$		(4) Oxygen

110	0.00-								
112.		ets are produced by Meiotic divisions		119.			-	ains a	re present in
	(1) (2)	Parthenocarpy			(1)	Must			
	(2)	Mitotic divisions			(2)	Mang			
	(4)	Parthenogenesis			(3)	Cyca			
119		ct the <i>correct</i> statement :			(4)	Pinus	S		
119.	(1)	Franklin Stahl coined the	torm "linkago"	120.	Afte	r karv	ngamy	follo	wed by meiosis, spores are
	(1) (2)		÷				exogen		
		Spliceosomes take part in			(1)		ospora	50025	
	(3)	Punnett square was devel scientist.	loped by a British		(2)	Agar	-		
	(4)	Transduction was discover	red by S. Altman		(3)	Alter			
114			-		(4)	Sacch	haromy	vces	
114.		ch of the following has perving pollen as fossils?	proved neipful in			_		_	
	(1)	Pollenkitt		121.					matched ?
	(1) (2)	Oil content			(1)		-	-	netes – Polysiphonia
	(3)	Cellulosic intine			(2)		ma cup		– Marchantia
	(4)	Sporopollenin			(3)		-	-	ores – Brown algae
115		ct the <i>correct</i> match :			(4)	Unice	ellular	organ	nism – <i>Chlorella</i>
110.	(1)		Streptococcus	122.	Mat	ch the	items	given	in Column I with those in
	(1)		pneumoniae					-	the <i>correct</i> option given
	(2)	Matthew Meselson –	Pisum sativum		belo	w:			
		and F. Stahl				Colun	nn I		Column II
	(3)	Alfred Hershey and –	TMV		a.	Herb	arium	i.	It is a place having a
		Martha Chase							collection of preserved
	(4)	Francois Jacob and –	Lac operon						plants and animals.
		Jacques Monod			b.	Key		ii.	A list that enumerates
116.		experimental proof for							methodically all the
		ication of DNA was first sho	own in a						species found in an area
	 (1) (2) 	Fungus Plant							with brief description
	(2) (3)	Bacterium							aiding identification.
	(4)	Virus			c.	Muse	eum	iii.	Is a place where dried and
117		ch of the following flowers	a only once in its						pressed plant specimens
		time?	s only once in its						mounted on sheets are
	(1)	Bamboo species			a	Catal	امصره	:	kept.
	(2)	Mango			d.	Cata	logue	iv.	A booklet containing a list of characters and their
	(3)	Jackfruit							alternates which are
	(4)	Papaya							helpful in identification of
118.		ch of the following pa ched?	irs is <i>wrongly</i>				_		various taxa.
	(1)	Starch synthesis in pea :	Multiple alleles			a	b	С	d
	(2)	XO type sex :	Grasshopper		(1)	i	iv	iii	
		determination			(2)	ii	iv	iii	
	(3)	ABO blood grouping :	Co-dominance		(3)	iii	ii	i	iv
	(4)	T.H. Morgan :	Linkage		(4)	iii	iv	i	ii

123.		ndary xylem and phloem in dicot stem are uced by	130.	A 'new' variety of rice was patented by a foreign company, though such varieties have been
	(1)	Apical meristems		present in India for a long time. This is related to
	(2)	Phellogen		(1) Co-667
	(3)	Vascular cambium		(2) Lerma Rojo
	(4)	Axillary meristems		(3) Sharbati Sonora
194				(4) Basmati
124.	(1)	umatophores occur in Halophytes	191	Which of the following is commonly used as a
	(1) (2)	Carnivorous plants	101.	vector for introducing a DNA fragment in human
	(2) (3)	Free-floating hydrophytes		lymphocytes ?
	(3)	Submerged hydrophytes		(1) Retrovirus
				(2) λ phage
125.		et potato is a modified		(3) Ti plasmid
	(1)	Stem		(4) pBR 322
	(2)	Tap root		-
	(3)	Adventitious root	132.	, 8 I
	(4)	Rhizome		assessing the safety of introducing genetically modified organisms for public use is
126.	Whic	ch of the following statements is <i>correct</i> ?		(1) Indian Council of Medical Research (ICMR)
	(1)	Ovules are not enclosed by ovary wall in		
		gymnosperms.		(2) Research Committee on Genetic Manipulation (RCGM)
	(2)	Horsetails are gymnosperms.		(3) Council for Scientific and Industrial
	(3)	Selaginella is heterosporous, while Salvinia is homosporous.		Research (CSIR)
	(4)	Stems are usually unbranched in both Cycas and Cedrus.		(4) Genetic Engineering Appraisal Committee (GEAC)
107	G -1-		133.	Select the <i>correct</i> match :
127.		et the <i>wrong</i> statement :		(1) Ribozyme – Nucleic acid
	(1)	Cell wall is present in members of Fungi and Plantae.		(2) T.H. Morgan – Transduction
	(2)	Pseudopodia are locomotory and feeding		(3) $F_2 \times \text{Recessive parent}$ – Dihybrid cross
	(_)	structures in Sporozoans.		(4) G. Mendel – Transformation
	(3)	Mushrooms belong to Basidiomycetes.	104	
	(4)	Mitochondria are the powerhouse of the cell	134.	The correct order of steps in Polymerase Chain Reaction (PCR) is
		in all kingdoms except Monera.		(1) Extension, Denaturation, Annealing
128.	Casp	parian strips occur in		(1) Extension, Denaturation, Annealing(2) Denaturation, Extension, Annealing
	(1)	Epidermis		(2) Denaturation, Extension, Functing(3) Annealing, Extension, Denaturation
	(2)	Cortex		(4) Denaturation, Annealing, Extension
	(3)	Pericycle		
	(4)	Endodermis	135.	<i>v</i> 1
129.	Plan	ts having little or no secondary growth are		and organisations without authorisation from the concerned country and its people is called
	(1)	Grasses		(1) Bio-infringement
	(2)	Conifers		(2) Biodegradation
	(3)	Deciduous angiosperms		(3) Biopiracy
	(4)	Cycads		(4) Bioexploitation

136.		transparent lens in tl lace by	ne human eye is held in	140.	All (1)	of the fo an op	-	g are pa	rt o	f an operon <i>except</i>
	(1)	ligaments attached t	o the ciliary body		(1) (2)	-	hancer			
	(1)	smooth muscles atta			(2)		ural ge	nog		
	(2)	ligaments attached t			(4)	a proi		nes		
	(4)	-	ched to the ciliary body			-				
	(1)	sinootii museles atta	ched to the chary body	141.					-	nce from the coding be the corresponding
137.	Whi	ch of the following	hormones can play a				-			nRNA?
	sign	ificant role in osteopo	rosis ?		(1)		JAUCG			
	(1)	Aldosterone and Pro	lactin		(2)	ACCU	JAUGC	GAU		
	(2)	Estrogen and Parath	yroid hormone		(3)	UGG	FUTCG	CAT		
	(3)	Progesterone and Al	dosterone		(4)	UCCA	AUAGC	GUA		
	(4)	Parathyroid hormon	e and Prolactin	142.	Mat	ch the	items ø	iven in	Col	lumn I with those in
							-			orrect option given
138.		-	tructures or regions is		belo	w:				
		prrectly paired with i				Colun	nn I			Column II
	(1)	Medulla oblongata :	controls respiration and cardiovascular reflexes.		a.	Prolif	erative	Phase	i.	Breakdown of endometrial lining
	(2)	Hypothalamus :	1		b.	Secre	tory Ph	ase	ii.	Follicular Phase
			releasing hormones and regulation of		c.	Mens	truation	n	iii.	Luteal Phase
			temperature,			a	b	с		
			hunger and thirst.		(1)	iii	ii	i		
	(3)	Limbic system :	consists of fibre tracts that		(2)	ii	iii	i		
			interconnect		(3)	i	iii	ii		
			different regions of		(4)	iii	i	ii		
			brain; controls movement.	143.	Acco	ording	to Hug	o de V	ries	, the mechanism of
	(4)	Corpus callosum :				ution is	-			,
	(1)	corpus canosani .	connecting left and		(1)	Multi	ple ster	o mutat	ions	3
			right cerebral		(2)	Pheno	otypic v	ariatio	ns	
			hemispheres.		(3)	Salta	tion			
139.	Whi	ch of the following is	an amino acid derived		(4)	Minor	r mutat	ions		
1000		none?		144.	Aw	oman h	las an Σ	K-linked	l coi	ndition on one of her
	(1)	Epinephrine				chromo erited b		This	ch	romosome can be
	(2)	Estradiol			(1)	Only	daught	ers		
	(3)	Ecdysone			(2)		grandcl	nildren		
					(3)	Only				
	(4)	Estriol			(4)	Both	sons an	d daug	hter	'S

ALHCA/WW/Page 17

145.	In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels ?	151.	Which one of the following population interactions is widely used in medical science for the production of antibiotics ?
	(1) Elephantiasis		(1) Commensalism
	(2) Ringworm disease		(2) Parasitism
	(3) Ascariasis		(3) Mutualism
	(4) Amoebiasis		(4) Amensalism
146.	Among the following sets of examples for divergent evolution, select the <i>incorrect</i> option :	152.	All of the following are included in 'Ex-situ conservation' <i>except</i>
	(1) Forelimbs of man, bat and cheetah		(1) Wildlife safari parks
	(2) Brain of bat, man and cheetah		(2) Botanical gardens
	(3) Heart of bat, man and cheetah		(3) Sacred groves
	(4) Eye of octopus, bat and man		(4) Seed banks
147.	Which of the following is <i>not</i> an autoimmune disease?	153.	Match the items given in Column I with those in Column II and select the <i>correct</i> option given
	(1) Psoriasis		below :
	(2) Alzheimer's disease		Column I Column II
	(3) Rheumatoid arthritis		a. Eutrophication i. UV-B radiation
	(4) Vitiligo		b. Sanitary landfill ii. Deforestation
148.	The similarity of bone structure in the forelimbs		c. Snow blindness iii. Nutrient
	of many vertebrates is an example of		enrichment
	(1) Homology		d. Jhum cultivation iv. Waste disposal
	(2) Convergent evolution		a b c d
	(3) Analogy		(1) ii i iii iv
	(4) Adaptive radiation		(2) iii iv i ii
149.	Conversion of milk to curd improves its		(3) i iii iv ii
	nutritional value by increasing the amount of		(4) i ii iv iii
	(1) Vitamin D	154.	In a growing population of a country,
	(2) Vitamin B ₁₂		 pre-reproductive individuals are more than
	(3) Vitamin A		the reproductive individuals.
	(4) Vitamin E		(2) reproductive and pre-reproductive
150.	Which of the following characteristics represent		individuals are equal in number.
	'Inheritance of blood groups' in humans ?		(3) reproductive individuals are less than the
	a. Dominance		post-reproductive individuals.
	b. Co-dominance		(4) pre-reproductive individuals are less than
	c. Multiple allele		the reproductive individuals.
	d. Incomplete dominance	155.	Which part of poppy plant is used to obtain the
	e. Polygenic inheritance		drug "Smack" ?
	(1) b, c and e		(1) Flowers
	(2) b, d and e		(2) Roots
	(3) a, b and c		(3) Latex
	(4) a, c and e		(4) Leaves

156.		nones secreted by the placenta to maintain nancy are	160.	repi	resents		-	ondit		ptions correct in asthma an	•
	(1) (2)	hCG, hPL, progestogens, prolactin hCG, hPL, progestogens, estrogens		(1)	respiratory surface		bro	onch	ioles; Decrease	ed	
	(3)	hCG, hPL, estrogens, relaxin, oxytocin		(2)		eased mmatio	respir n of br			surface; s	
	(4)	hCG, progestogens, estrogens, glucocorticoids		(3)		eased nu iratory s			orono	chioles; Increase	эd
				(4)	Decr	eased mmatio	respi	irato		surface;	
157.	The	contraceptive 'SAHELI'	1.01	.							
	(1)	blocks estrogen receptors in the uterus, preventing eggs from getting implanted.	161.		umn I					in I with those i rect option give	
	(2)	is an IUD.			Colu	mn I			Ca	olumn II	
	(3)	increases the concentration of estrogen and prevents ovulation in females.		a.	Tricu	ıspid va	lve	i.		ween left atriur l left ventricle	n
	(4)	is a post-coital contraceptive.		b.	Bicu	spid val	ve	ii.	ven	ween right tricle and monary artery	
158.	from			c.	Sem	ilunar v	alve	iii.	Bet	ween right ium and right	
	(1)	ectoderm and mesoderm							ven	tricle	
	(2)	mesoderm and trophoblast			a	b	С				
	(3)	endoderm and mesoderm		(1)	iii	i	ii				
	(4)	ectoderm and endoderm		(2)	i	ii 	iii 				
				(3)	i 	iii	ii 				
159.		difference between spermiogenesis and		(4)	ii	i	iii				
	-	miation is	162.							In I with those i	
	(1)	In spermiogenesis spermatids are formed,		belo		I and s	elect 1	the o	corr	ect option give	en
		while in spermiation spermatozoa are formed.		2010		mn I				Column II	
	(0)			a.	Tida	l volume	e		i.	2500 – 3000 ml	L
	(2)	In spermiogenesis spermatozoa from sertoli cells are released into the cavity of seminiferous tubules, while in spermiation		b.	Inspiratory Reserve volume				ii.	1100 – 1200 ml	L
		spermatozoa are formed.		c.	-	Expiratory Reserve			iii. 500 – 550 mL		
	(3)	In spermiogenesis spermatozoa are formed,		d.	Resi	dual vol	ume		iv.	1000 – 1100 ml	L
		while in spermiation spermatids are formed.			a	b	с		d		
	(4)	In spermiogenesis spermatozoa are formed,		(1)	iii	ii	i	:	iv		
	(-)	while in spermiation spermatozoa are		(2)	i	iv	ii	:	iii		
		released from sertoli cells into the cavity of		(3)	:::	i	:		ii		
		released from serior cens into the eavily of		(0)	iii	1	iv		11		

163.		ımn Il				umn I with those in <i>orrect</i> option given	165.	resp	oirator	y disord	-	g is an occupational
		Colui	mn I			Column II		(1)	Anth			
		(Fune	ction)			(Part of Excretory		(2)	Botu			
						System)		(3)	Silico			
	a.	Ultra	afiltration	n	i.	Henle's loop		(4)	Emp	hysema		
	b.	Conc of uri	entration ine	1	ii.	Ureter	166.			is imp n becaus		in skeletal muscle
	c.	Tran urine	sport of		iii.	Urinary bladder		(1)		-		remove the masking of for myosin.
	d.	Stora	age of uri	ne	iv.	Malpighian corpuscle		(2)	detao filam		e myosi	n head from the actin
					v.	Proximal convoluted tubule		(3)	activ it.	ates the	e myosir	ATPase by binding to
		a	b	с	d			(4)	preve	ents the	e forma	tion of bonds between
	(1)	iv	v	ii	ii	i					cross 1	bridges and the actin
	(2)	v	iv	i	ii				filam	lent.		
	(3)	iv	i	ii	ii	i	167.	Mat	ch the	items g	iven in	Column I with those in
	(4)	v	iv	i	ii	i				I and se	elect th	e <i>correct</i> option given
164.	Mate	ch the	items gi	ven i	n Col	umn I with those in		belo		.		
	Colu	ımn Il	and se	lect t	he co	orrect option given			Colu			Column II
	belo	w:						a.		nogen	i. 	Osmotic balance
		Colui	mn I		Col	lumn II		b.	Glob		ii. 	Blood clotting
	a.	Glyco	osuria	i.		imulation of uric		c.	Albu	mın	iii.	Defence mechanism
		~				in joints			a	b	С	
	b.	Gout		ii.		s of crystallised s within the kidney		(1)	iii	ii	i	
	c.	Rena	l calculi	iii.		ammation in		(2)	i	iii 	ii 	
		100110				neruli		(3) (4)	i ii	ii iii	iii i	
	d.	Glom neph	erular ritis	iv.	Pres urin	ence of glucose in e	168.					gastric cells indirectly
		a	b	с	d			help	o in ery	thropoi	esis ?	
	(1)	iii	ii	iv	i			(1)	Chie	f cells		
	(2)	ii	iii	i	iv	7		(2)	Goble	et cells		
	(3)	i	ii	iii	iv	7		(3)	Muco	ous cells		
	(4)	iv	i	ii	ii	i		(4)	Parie	etal cells	5	

169.	Whie	ch of these statements is <i>incorrect</i> ?	175.	Whie	ch one of these animals is not a		
	(1) Enzymes of TCA cycle are present in homeotherr						
		mitochondrial matrix.		(1)	Macropus		
	(2)	Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.		(2)	Camelus		
	(3)	Glycolysis occurs in cytosol.		(3)	Chelone		
	(4)	Oxidative phosphorylation takes place in outer mitochondrial membrane.		(4)	Psittacula		
170			176.	0 1			
170.		y ribosomes may associate with a single NA to form multiple copies of a polypeptide			ale cockroach from a female cockroach ?		
		altaneously. Such strings of ribosomes are		(1)	Presence of a boat shaped sternum on the 9 th abdominal segment		
		ned as		(2)	Forewings with darker tegmina		
	(1)	Polysome		(2)	Presence of caudal styles		
	(2)	Plastidome		(4)	Presence of anal cerci		
	(3)	Polyhedral bodies Nucleosome		(1)			
	(4)	Nucleosome	177.		tify the vertebrate group of animals		
171.		ch of the following terms describe human tition ?		char syste	racterized by crop and gizzard in its digestive em.		
	(1)	Thecodont, Diphyodont, Homodont		(1)	Amphibia		
	(2)	Pleurodont, Monophyodont, Homodont		(2)	Aves		
	(3)	Thecodont, Diphyodont, Heterodont		(3)	Reptilia		
	(4)	Pleurodont, Diphyodont, Heterodont		(4)	Osteichthyes		
172.	Sele	ct the <i>incorrect</i> match :	178.	Cilia	tes differ from all other protozoans in		
	(1)	Lampbrush – Diplotene bivalents		(1)	using flagella for locomotion		
		chromosomes		(2)	using pseudopodia for capturing prey		
	(2)	Submetacentric – L-shaped chromososmes chromosomes		(3)	having a contractile vacuole for removing excess water		
	(3)	Allosomes – Sex chromosomes		(4)	having two types of nuclei		
	(4)	Polytene – Oocytes of amphibians chromosomes	170	TTT			
			179.		ch of the following organisms are known as f producers in the oceans ?		
173.		l bodies are mainly composed of		(1)	Dinoflagellates		
	(1)	Proteins and lipids		(2)	Cyanobacteria		
	(2)	Nucleic acids and SER		(3)	Diatoms		
	(3)	DNA and RNA		(4)	Euglenoids		
	(4)	Free ribosomes and RER	100				
174.		ch of the following events does <i>not</i> occur in ch endoplasmic reticulum ?	180.	meta	ch of the following animals does <i>not</i> undergo amorphosis ?		
	(1)	Protein folding		(1)	Earthworm		
	(2)	Cleavage of signal peptide		(2)	Moth		
	(3)	Protein glycosylation		(3)	Tunicate		
	(4)	Phospholipid synthesis		(4)	Starfish		

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

Read carefully the following instructions :

- 1. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. **Cases where a** candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

BOOKLET CODE - ALHCA (WW)

Q.No.	Answer
1.	(1)
2.	(3)
3.	(1)
4.	(1)
5.	(1)
6.	(3)
7.	(1)
8.	(2)
9.	(4)
10.	(1)
11.	(1)
12.	(3)
13.	(3)
14.	(4)
15.	(3)
16.	(4)
17.	(4)
18.	(3)
19.	(3)
20.	(3)
21.	(2)
22.	(3)
23.	(3)
24.	(1)
25.	(1)
26.	(3)
27.	(3)
28.	(4)
29.	(4)
30.	(3)
31.	(4)
32.	(4)
33.	(4)
34.	(4)
35.	(1)
36.	(3)
37.	(4)
38.	(1)
39.	(1)
40.	(3)
40.	(2)
41.	(1)
42.	(1)
43. 44.	(1)
44. 45.	(3)
40.	(I)

Q.No.	Answer			
46.	(3)			
47.	(1)			
48.	(2)			
49.	(4)			
50.	(4)			
51.	(4)			
52.	(4)			
53.	(1)			
54.	(1)			
55.	(2)			
56.	(3)			
57.	(4)			
58.	(3)			
59.	(1)			
60.	(4)			
61.	(1)			
62.	(1)			
63.	(3)			
64.	(1)*			
65.	(3)			
66.	(2)			
67.	(2) (4) (2) (2)			
68.				
69.				
70.	(3)			
71. 72.	(2)			
72.	(2)			
73.	(4)			
74.	(3)			
75.	(1)			
76.	(2)			
77.	(4)			
78.	(4)			
79.	(2)			
80.	(1)			
81.	(3)			
82.	(3)			
83.	(4)			
84.	(1)			
85.	(4)			
86.	(2)			
87.	(1)			
88.	(1)			
89.	(1)			
90.				
90.	(4)			

Answer	Q.No.	Answer
(3)	91.	(1)
(1)	92.	(3)
(2)	93.	(2)
(4)	94.	(3)
(4)	95.	(4)
(4)	96.	(4)
(4)	97.	(3)
(1)	98.	(1)
(1)	99.	(3)
(2)	100.	(1)
(3)	101.	(2)
(4)	102.	(4)
(3)	102.	(2)
(1)	100.	(3)
 (4)	104.	(4)
 (1)	106.	(1)
 (1)	100.	(1)
 (3)	107.	(1)
 (1)*	100.	(4)
 (3)	110.	(3)
 (3)	111.	(3)
 (2)	112.	(3)
 	112.	(3)
 (2)	113.	(3)
 (2)	114.	. ,
 (3)	115.	(4)
 (2)		(3)
(2)	117.	(1)
(4)	118.	(1)
(3)	119.	(4)
(1)	120.	(2)
(2)	121.	(1)
(4)	122.	(4)
(4)	123.	(3)
(2)	124.	(1)
(1)	125.	(3)
(3)	126.	(1)
(3)	127.	(2)
(4)	128.	(4)
 (1)	129.	(1)
(4)	130.	(4)
(2)	131.	(1)
(1)	132.	(4)
(1)	133.	(1)
 (4)	134.	(4)

Q.No.	Answer	
136.	(1)	
137.	(2)	
138.	(3)	
139.	(1)	
140.	(2)	
141.	(1)	
142.	(1)	
143.	(3)	
144.	(4)	
145.	(1)	
146.	(4)	
147.	(2)	
148.	(1)	
149.	(2)	
150.	(3)	
151.	(4)	
152.	(3)	
153.	(2)	
154.	(1)	
155.	(3)	
156.	(2)	
157.	(1)	
158.	(1)	
159.	(4)	
160.	(1)	
161.	(1)	
162.	(3)	
163.	(3)	
164.	(4)	
165.	(3)	
166.	(1)	
167.	(4)	
168.	(4)	
169.	(4)	
170.	(1)	
170.	(3)	
171.		
	(4)	
173.	(4)	
174.	(4)	
175.	(3)	
176.	(3)	
177.	(2)	
178.	(4)	
179.	(3)	
180.	(1)	